# GCE Examinations Advanced Subsidiary / Advanced Level

# Statistics Module S2

## Paper A

### **MARKING GUIDE**

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.



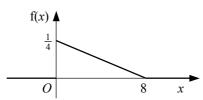
Written by Shaun Armstrong & Chris Huffer

© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

#### S2 Paper A - Marking Guide

1. (a) median = 
$$125 \text{ m}$$


$$IQR = middle \ half = 25 \ m \ (or \ 137.5 - 112.5)$$

**2.** (a) = 1 - F(5) = 1 - 
$$\frac{1}{64}$$
 (80 - 25) =  $\frac{9}{64}$ 

(b) 
$$f(x) = F'(x) = \frac{1}{64} (16 - 2x)$$

$$f(x) = \begin{cases} \frac{1}{32} (8 - x), & 0 \le x \le 8, \\ 0, & \text{otherwise.} \end{cases}$$

(c)



В3

**(8)** 

$$\lambda = \frac{180}{40} = 4.5$$

(b) let 
$$X = \text{no. of repairs per day } :: X \sim \text{Po}(4.5)$$

(i) 
$$P(X=0) = 0.0111$$

(ii) 
$$P(X > 6) = 1 - P(X \le 6) = 1 - 0.8311 = 0.1689$$

(c) let 
$$Y = \text{no. of days he repairs more than } 6 : Y \sim B(10, 0.1689)$$

$$P(Y=3) = {}^{10}C_3(0.1689)^3(0.8311)^7 = 0.158 (3sf)$$

(c) let 
$$X = \text{no. of students who play tennis } :: X \sim B(120, \frac{1}{20})$$

$$H_0: p = \frac{1}{20}$$
  $H_1: p \neq \frac{1}{20}$ 

Using Po approx. 
$$X \approx \sim \text{Po}(6)$$

$$P(X \le 2) = 0.0620$$
;  $P(X \le 10) = 0.9574$   
  $\therefore$  C.R. is  $X \le 2$  or  $X \ge 11$ 

$$0.0620 + 0.0426 = 0.1046$$

(10)

(d)

| 5. | (a)        | let $X =$ no. out of 10 shares that have gone up $\therefore X \sim B(10, 0.35)$<br>(i) $P(X = 6) = 0.9740 - 0.9051 = 0.0689$<br>(ii) $P(> 5 \text{ gone down}) = P(X \le 4) = 0.7515$                                   | M1<br>M1 A1<br>M1 A1    |      |
|----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|
|    | <i>(b)</i> | let $Y = \text{no.}$ out of 80 shares that have gone down $\therefore Y \sim B(80, 0.65)$<br>N approx. $D \sim N(52, 18.2)$<br>$P(Y > 55) \approx P(D > 55.5)$<br>$= P(Z > \frac{55.5 - 52}{\sqrt{18.2}}) = P(Z > 0.82)$ | M1<br>M1 A1<br>M1<br>A1 |      |
|    |            | = 1 - 0.7939 = 0.2061                                                                                                                                                                                                    | A1                      | (11) |
| 6. | (a)        | Poisson with $\lambda = 4$                                                                                                                                                                                               | B1                      |      |
|    | <i>(b)</i> | e.g. more people shopping $\therefore$ probably sell more so $\lambda$ higher                                                                                                                                            | B1                      |      |
|    | (c)        | (i) let $X = \text{no. of sales per hour } \therefore X \sim \text{Po}(4)$<br>$P(X > 4) = 1 - P(X \le 4) = 1 - 0.6288 = 0.3712$                                                                                          | M1 A1                   |      |
|    |            | (ii) let $Y = \text{no. of sales per half-hour}$ $\therefore Y \sim \text{Po}(2)$<br>P(Y = 0) = 0.1353                                                                                                                   | M1                      |      |
|    |            | (iii) $(0.3712)^3 = 0.0511 \text{ (3sf)}$                                                                                                                                                                                | A1<br>M1 A1             |      |
|    | (d)        | $H_0: \lambda = 4$ $H_1: \lambda > 4$                                                                                                                                                                                    | B1                      |      |
|    |            | $P(X \ge 7) = 1 - P(X \le 6) = 1 - 0.8893 = 0.1107$<br>more than 5% : not significant, insufficient evidence of increase                                                                                                 | M1 A1                   | (12) |
|    |            | more than 5% not significant, insufficient evidence of increase                                                                                                                                                          | A1                      | (12) |
| 7. | (a)        | $\int_0^3 k(t^2 + 2)  \mathrm{d}t = 1$                                                                                                                                                                                   | M1                      |      |
|    |            | $\therefore \ k[\frac{1}{3}t^3 + 2t]_0^3 = 1$                                                                                                                                                                            | A1                      |      |
|    |            | $\therefore \ k[(9+6)-(0)]=1; \ 15k=1; \ k=\frac{1}{15}$                                                                                                                                                                 | M1 A1                   |      |
|    | <i>(b)</i> | $f(t) = \begin{cases} \frac{11}{15} \\ \frac{2}{15} \end{cases}$                                                                                                                                                         |                         |      |
|    |            | O 3 $x$                                                                                                                                                                                                                  | В3                      |      |
|    | (c)        | 3                                                                                                                                                                                                                        | A1                      |      |
|    | (d)        | $E(T) = \int_0^3 t \times \frac{1}{15} (t^2 + 2) dt = \frac{1}{15} \int_0^3 t^3 + 2t dt$                                                                                                                                 | M1                      |      |
|    |            | $= \frac{1}{15} \left[ \frac{1}{4} t^4 + t^2 \right]_0^3$                                                                                                                                                                | M1 A1                   |      |
|    |            | $= \frac{1}{15} \left[ \left( \frac{81}{4} + 9 \right) - (0) \right] = \frac{39}{20} \text{ or } 1.95$                                                                                                                   | M1 A1                   |      |
|    | (e)        | $E(T^2) = \int_0^3 t^2 \times \frac{1}{15} (t^2 + 2) dt = \frac{1}{15} \int_0^3 t^4 + 2t^2 dt$                                                                                                                           | M1                      |      |
|    |            | $= \frac{1}{15} \left[ \frac{1}{5} t^5 + \frac{2}{3} t^3 \right]_0^3$                                                                                                                                                    | <b>A</b> 1              |      |
|    |            | $= \frac{1}{15} \left[ \left( \frac{243}{5} + 18 \right) - (0) \right] = \frac{111}{25}$                                                                                                                                 | M1 A1                   |      |
|    |            | $Var(T) = \frac{111}{25} - (\frac{39}{20})^2 = \frac{255}{400} = \frac{51}{80} = 0.6375$                                                                                                                                 | M1                      |      |
|    |            | $\therefore$ std. dev = $\sqrt{0.6375} = 0.798$ (3sf)                                                                                                                                                                    | A1                      | (19) |

Total (75)

## Performance Record – S2 Paper A

| Question no. | 1           | 2                 | 3                    | 4                                                  | 5                      | 6                     | 7                                     | Total |
|--------------|-------------|-------------------|----------------------|----------------------------------------------------|------------------------|-----------------------|---------------------------------------|-------|
| Topic(s)     | rect. dist. | c.d.f.,<br>p.d.f. | Poisson,<br>binomial | sampling,<br>Po appr. to<br>binomial,<br>hyp. test | binomial,<br>N approx. | Poisson,<br>hyp. test | p.d.f.,<br>mode,<br>mean,<br>variance |       |
| Marks        | 5           | 8                 | 10                   | 10                                                 | 11                     | 12                    | 19                                    | 75    |
| Student      |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |
|              |             |                   |                      |                                                    |                        |                       |                                       |       |